
Banishing
Loops with
Functional PHP
@davidbhayes
@davidbhayes from ThoughtfulCode.com

Goals
To understand...

1. what functional programming is

2. practical substitutions we can make in our code using it

3. why it can be beneficial to make these changes

@davidbhayes from ThoughtfulCode.com

In the beginning, there was code.
And that was all...

@davidbhayes from ThoughtfulCode.com

As time goes on, we learn that
maintaining code is hard

@davidbhayes from ThoughtfulCode.com

To ponder...

Why is
maintaining
code hard?

@davidbhayes from ThoughtfulCode.com

Today, there are basically

Three Paradigms

@davidbhayes from ThoughtfulCode.com

Procedural Code
• You tell the computer exactly what to do

• You might have "functions" which contain your common
procedures

@davidbhayes from ThoughtfulCode.com

OO Code
• You use the inherent human understanding of objects to

make code more comprehensible

• In PHP, you use classes to define blueprint for instances of
objects

@davidbhayes from ThoughtfulCode.com

Functional Code
• Mathematical-functions have magic powers, pure functions

are more unitary than procedures

• All pure functions are stateless and create only their own
output

@davidbhayes from ThoughtfulCode.com

Functional Programming
in a bit more depth

@davidbhayes from ThoughtfulCode.com

Pure functions...

Read only their inputs

@davidbhayes from ThoughtfulCode.com

Pure functions...

Affect only their outputs

@davidbhayes from ThoughtfulCode.com

Only touching inputs and outputs means

• No DB changes

• No files created

• No reading of global state (like time)

@davidbhayes from ThoughtfulCode.com

It also means...
• Functions are completely idempotent

• Functions can be composed

• Rerunning a function for debugging requires only knowing
its name and parameters

@davidbhayes from ThoughtfulCode.com

Functional programming languages

• Haskell

• Elm

• Clojure

• Scala (sort of)

• JavaScript (sort of)

@davidbhayes from ThoughtfulCode.com

Now, Lets Talk About

PHP

@davidbhayes from ThoughtfulCode.com

Most "classic" or "legacy" PHP is

procedural

@davidbhayes from ThoughtfulCode.com

Most modern PHP code is

object-oriented

with procedural processes inside

@davidbhayes from ThoughtfulCode.com

I love foreach

@davidbhayes from ThoughtfulCode.com

foreach is fundamentally
procedural
(yes, even inside an object method)

@davidbhayes from ThoughtfulCode.com

A classic PHP pattern:

$saved = [];
foreach($items as $item) {
 if ($item->size > 5) {
 $saved[] = $item;
 }
}
$display_titles = [];
foreach($saved as $item) {
 $display_titles[] = ucfirst($item->title);
}
foreach($display_titles as $title) {
 echo '<h1>'.$title.'</h1>';
}

@davidbhayes from ThoughtfulCode.com

How Does Functional
Help?

@davidbhayes from ThoughtfulCode.com

What's map?
Transform each entity in a list using a given function

@davidbhayes from ThoughtfulCode.com

What's filter?
Keep items in a list if a function return true when run on an
item

@davidbhayes from ThoughtfulCode.com

Getting Practical

FP in PHP

@davidbhayes from ThoughtfulCode.com

array_map

// array_map (callable $callback , array $array1 [, array $...])

$start = [1, 2, 3, 4, 5];
$end = array_map(function ($i) {
 return $i * 2;
}, $start);

// [2, 4, 6, 8, 10]

@davidbhayes from ThoughtfulCode.com

array_map makes this code...

$start = [1, 2, 3, 4, 5];
$end = [];
foreach($start as $i) {
 $end[] = $i * 2;
}

@davidbhayes from ThoughtfulCode.com

Into this
$start = [1, 2, 3, 4, 5];
$end = array_map(function ($i) {
 return $i * 2;
}, $start);

@davidbhayes from ThoughtfulCode.com

array_filter

// array_filter (array $array [, callable $callback [, int $flag = 0]])

$start = [1, 2, 3, 4, 5, 6];
$even = array_filter($start, function ($i) {
 return $i % 2 === 0;
});

// [2, 4, 6]

@davidbhayes from ThoughtfulCode.com

array_filter makes this code...

$start = [1, 2, 3, 4, 5, 6];
$even = [];
foreach($start as $i) {
 if ($i % 2 === 0) {
 $even[] = $i;
 }
}

@davidbhayes from ThoughtfulCode.com

Into this
$start = [1, 2, 3, 4, 5, 6];
$even = array_filter($start, function ($i) {
 return $i % 2 === 0;
});

@davidbhayes from ThoughtfulCode.com

Let's Talk about
Callables

@davidbhayes from ThoughtfulCode.com

Simple function declarations are
global
function hello($name) {
 return 'Hello, '.$name;
}

Called like...

echo hello('David');

@davidbhayes from ThoughtfulCode.com

Anonymous functions can be saved to
variables

$hello = function($name) {
 return 'Hello, '.$name;
}

Called like...

echo $hello('David');

@davidbhayes from ThoughtfulCode.com

Classes can have static methods

class Namer {
 public static function hello($name) {
 return 'Hello, '.$name;
 }
}

Called like...

echo Namer::hello('David');

@davidbhayes from ThoughtfulCode.com

Objects can have methods

class Namer {
 public function hello($name) {
 return 'Hello, '.$name;
 }
}

Called like...

$namer = new Namer;
echo $namer->hello('David');

@davidbhayes from ThoughtfulCode.com

All forms can be used with array_map, etc

$names = ['David', 'Megan', 'Sierra'];

array_map('hello', $names);

array_map($hello, $names);

array_map('Namer::hello', $names);
array_map(['Namer', 'hello'], $names);

$namer = new Namer;
array_map([$namer, 'hello'], $names);

@davidbhayes from ThoughtfulCode.com

Let's Talk about use

@davidbhayes from ThoughtfulCode.com

Variable Scoping

@davidbhayes from ThoughtfulCode.com

This does not work!

$nonlocal = 7;
$greaterThan = function($number) {
 return $number > $nonlocal;
}
$greaterThan(1);

@davidbhayes from ThoughtfulCode.com

This also does not work!

global $nonlocal = 7;
$greaterThan = function($number) {
 return $number > $nonlocal;
}
$greaterThan(1);

@davidbhayes from ThoughtfulCode.com

This does work!

global $nonlocal = 7;
$greaterThan = function($number) {
 global $nonlocal;
 return $number > $nonlocal;
}
$greaterThan(1);

@davidbhayes from ThoughtfulCode.com

But this is better!

$nonlocal = 7;
$greaterThan = function($number) use ($nonlocal) {
 return $number > $nonlocal;
}
$greaterThan(1);

@davidbhayes from ThoughtfulCode.com

Why this matters

$nonlocal = 7;
$greaterThan = function($number) use ($nonlocal) {
 return $number > $nonlocal;
}
array_filter($array, $greaterThan);

@davidbhayes from ThoughtfulCode.com

Or else

$nonlocal = 7;
array_filter($array, function($number) use ($nonlocal) {
 return $number > $nonlocal;
});

@davidbhayes from ThoughtfulCode.com

Remember this?

$saved = [];
foreach($items as $item) {
 if ($item->size > 5) {
 $saved[] = $item;
 }
}
$display_titles = [];
foreach($saved as $item) {
 $display_titles[] = ucfirst($item->title);
}
foreach($display_titles as $title) {
 echo '<h1>'.$title.'</h1>';
}

@davidbhayes from ThoughtfulCode.com

Let's transform

filter in for foreach
$saved = array_filter($items, function($i) {
 return $item->size > 5;
});
$display_titles = [];
foreach($saved as $item) {
 $display_titles[] = ucfirst($item->title);
}
foreach($display_titles as $title) {
 echo '<h1>'.$title.'</h1>';
}

@davidbhayes from ThoughtfulCode.com

Let's transform

map for capitalizing
$saved = array_filter($items, function($i) {
 return $i->size > 5;
});
$display_titles = array_map(function($item) {
 return ucfirst($item->title);
}, $saved);
// somewhere else
foreach($display_titles as $title) {
 echo '<h1>'.$title.'</h1>';
}

@davidbhayes from ThoughtfulCode.com

Hassles with that
• Temporary variables at every step

• Argument order on array_filter and array_map is
inconsistent

@davidbhayes from ThoughtfulCode.com

But maybe we can solve that...

@davidbhayes from ThoughtfulCode.com

Collection Libraries

@davidbhayes from ThoughtfulCode.com

Collections allow us to streamline
filter, map, etc

@davidbhayes from ThoughtfulCode.com

Why collection
pipelines?

@davidbhayes from ThoughtfulCode.com

Easier to read -- we read left to right in
English

array_map(array_filter()) executes inside out

@davidbhayes from ThoughtfulCode.com

Skip argument order issues

Which one's the array?

@davidbhayes from ThoughtfulCode.com

No need for temps with
fluent interface

->chaining()->methods()->is()->cool();

@davidbhayes from ThoughtfulCode.com

Your ORM may
already have one...

@davidbhayes from ThoughtfulCode.com

Using a Laravel Collection
We have a Reddit-like site:
• Posts have scores

• Comments have scores

• We have a 'fluency scorer'

• We have a hypothesis that good posts get higher scoring
and more fluent comments

@davidbhayes from ThoughtfulCode.com

Without FP

$posts = Posts::all();
$goodPosts = [];
foreach($posts as $post) {
 if ($post->score > 500) {
 $goodPosts[] = $post;
 }
}
$goodComments = [];
foreach($goodPosts as $post) {
 $comments = $post->comments;
 foreach($comments as $c) {
 if ($c->score > 100) {
 $goodComments[] = $c;
 }
 }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
 $local['score'] = $c->score;
 $local['fluency'] = FluentScorer::score($c->content);
 $local['comment'] = $c;
 $local['post'] = $c->post;
 $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com

Refactor 1 - filter out posts

$goodPosts = Posts::all()
 ->filter(function($post) {
 return $post->score > 500
 });
$goodComments = [];
foreach($goodPosts as $post) {
 $comments = $post->comments;
 foreach($comments as $c) {
 if ($c->score > 100) {
 $goodComments[] = $c;
 }
 }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
 $local['score'] = $c->score;
 $local['fluency'] = FluentScorer::score($c->content);
 $local['comment'] = $c;
 $local['post'] = $c->post;
 $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com

Quick Explanation

¥ flatten will take nested arrays and de-nest them

¥ PHP doesn't have an native array_flatten , but you can
make one

@davidbhayes from ThoughtfulCode.com

Refactor 2 - collect good comments on good posts

$goodComments = Posts::all()
 ->filter(function ($post) {
 return $post->score > 500
 })
 ->map(function ($p) {
 return $post->comments;
 })
 ->flatten()
 ->filter(function ($c) {
 return $c->score > 100;
 });
$scoredGoodComments = [];
foreach ($goodComments as $c) {
 $local['score'] = $c->score;
 $local['fluency'] = FluentScorer::score($c->content);
 $local['comment'] = $c;
 $local['post'] = $c->post;
 $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com

Quick SimpliÞcation

¥ flatMap is a shortcut for map then flatten

@davidbhayes from ThoughtfulCode.com

Refactor 2 - collect good comments on good posts
(again)

$goodComments = Posts::all()
 ->filter(function($post) {
 return $post->score > 500
 })
 ->flatMap(function($p) {
 return $post->comments;
 })
 ->filter(function($c) {
 return $c->score > 100;
 });
$scoredGoodComments = [];
foreach($goodComments as $c) {
 $local['score'] = $c->score;
 $local['fluency'] = FluentScorer::score($c->content);
 $local['comment'] = $c;
 $local['post'] = $c->post;
 $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com

Refactor 3 - create new set with a map

$scoredGoodCommments =
 Posts::all()
 ->filter(function($post) {
 return $post->score > 500
 })
 ->flatMap(function($p) {
 return $post->comments;
 })
 ->filter(function($c) {
 return $c->score > 100;
 })
 ->map(function($c) {
 return [
 'score' => $c->score,
 'fluency' => FluentScorer::score($c->content),
 'comment' => $c,
 'post' => $c->post,
];
 });

@davidbhayes from ThoughtfulCode.com

Did it get better? (original)

$posts = Posts::all();
$goodPosts = [];
foreach($posts as $post) {
 if ($post->score > 500) {
 $goodPosts[] = $post;
 }
}
$goodComments = [];
foreach($goodPosts as $post) {
 $comments = $post->comments;
 foreach($comments as $c) {
 if ($c->score > 100) {
 $goodComments[] = $c;
 }
 }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
 $local['score'] = $c->score;
 $local['fluency'] = FluentScorer::score($c->content);
 $local['comment'] = $c;
 $local['post'] = $c->post;
 $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com

Did it get better? (final)

$scoredGoodCommments =
 Posts::all()
 ->filter(function($post) {
 return $post->score > 500
 })
 ->flatMap(function($p) {
 return $post->comments;
 })
 ->filter(function($c) {
 return $c->score > 100;
 })
 ->map(function($c) {
 return [
 'score' => $c->score,
 'fluency' => FluentScorer::score($c->content),
 'comment' => $c,
 'post' => $c->post,
];
 });

@davidbhayes from ThoughtfulCode.com

What makes code hard to
maintain?
• Short-lived variables are clutter

• Disguised intent via foreach

• Deeply nested conditionals

@davidbhayes from ThoughtfulCode.com

Does FP help?
Local and temporary $variables are reduced, especially with
pipelines

@davidbhayes from ThoughtfulCode.com

Does FP help?

Replacing foreach es with map and filter makes it clearer
what each does

@davidbhayes from ThoughtfulCode.com

Does FP help?

Nesting is minimized by small, single purpose functions

@davidbhayes from ThoughtfulCode.com

"A program cannot
change until it is
alive in a
programmer's head."

—Jessica Kerr on Ruby Rogues

(via @johnkary)

@davidbhayes from ThoughtfulCode.com

Localizing control and complexity makes it easier for you to

jump in

between meetings, children, life, etc

@davidbhayes from ThoughtfulCode.com

Again

Did it get better? (original)
$posts = Posts::all();
$goodPosts = [];
foreach($posts as $post) {
 if ($post->score > 500) {
 $goodPosts[] = $post;
 }
}
$goodComments = [];
foreach($goodPosts as $post) {
 $comments = $post->comments;
 foreach($comments as $c) {
 if ($c->score > 100) {
 $goodComments[] = $c;
 }
 }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
 $local['score'] = $c->score;
 $local['fluency'] = FluentScorer::score($c->content);
 $local['comment'] = $c;
 $local['post'] = $c->post;
 $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com

Did it get better? (Þnal)

$scoredGoodCommments =
 Posts::all()
 ->filter(function ($post) {
 return $post->score > 500
 })
 ->flatMap(function ($p) {
 return $post->comments;
 })
 ->filter(function ($c) {
 return $c->score > 100;
 })
 ->map(function ($c) {
 return [
 'score' => $c->score,
 'fluency' => FluentScorer::score($c->content),
 'comment' => $c,
 'post' => $c->post,
];
 });

@davidbhayes from ThoughtfulCode.com

Thank You!
I've been @davidbhayes

I run a site called WPShout

and another called Thoughtful Code

@davidbhayes from ThoughtfulCode.com

