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Goals
To understand...

1. what functional programming is

2. practical substitutions we can make in our code using it

3. why it can be beneficial to make these changes
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In the beginning, there was code. 
And that was all...
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As time goes on, we learn that 
maintaining code is hard
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To ponder...

Why is
maintaining
code hard?
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Today, there are basically

Three Paradigms
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Procedural Code
• You tell the computer exactly what to do

• You might have "functions" which contain your common 
procedures
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OO Code
• You use the inherent human understanding of objects to 

make code more comprehensible

• In PHP, you use classes to define blueprint for instances of 
objects
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Functional Code
• Mathematical-functions have magic powers, pure functions 

are more unitary than procedures

• All pure functions are stateless and create only their own 
output
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Functional Programming
in a bit more depth
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Pure functions...

Read only their inputs
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Pure functions...

Affect only their outputs
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Only touching inputs and outputs means

• No DB changes

• No files created

• No reading of global state (like time)
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It also means...
• Functions are completely idempotent

• Functions can be composed

• Rerunning a function for debugging requires only knowing 
its name and parameters
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Functional programming languages

• Haskell

• Elm

• Clojure

• Scala (sort of)

• JavaScript (sort of)
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Now, Lets Talk About

PHP
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Most "classic" or "legacy" PHP is 

procedural
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Most modern PHP code is 

object-oriented

with procedural processes inside
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I love foreach
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foreach is fundamentally 
procedural
(yes, even inside an object method)
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A classic PHP pattern:

$saved = [];
foreach($items as $item) {
    if ($item->size > 5) {
        $saved[] = $item;
    }
}
$display_titles = [];
foreach($saved as $item) {
    $display_titles[] = ucfirst($item->title);
}
foreach($display_titles as $title) {
    echo '<h1>'.$title.'</h1>';
}
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How Does Functional 
Help?
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What's map?
Transform each entity in a list using a given function
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What's filter?
Keep items in a list if a function return true when run on an 
item
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Getting Practical

FP in PHP
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array_map

// array_map ( callable $callback , array $array1 [, array $... ] )

$start = [1, 2, 3, 4, 5];
$end = array_map(function ($i) {
    return $i * 2;
}, $start);

// [2, 4, 6, 8, 10]
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array_map makes this code...

$start = [1, 2, 3, 4, 5];
$end = [];
foreach($start as $i) {
    $end[] = $i * 2;
}

@davidbhayes from ThoughtfulCode.com



Into this
$start = [1, 2, 3, 4, 5];
$end = array_map(function ($i) {
    return $i * 2;
}, $start);
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array_filter

// array_filter ( array $array [, callable $callback [, int $flag = 0 ]] )

$start = [1, 2, 3, 4, 5, 6];
$even = array_filter($start, function ($i) {
    return $i % 2 === 0;
});

// [2, 4, 6]
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array_filter makes this code...

$start = [1, 2, 3, 4, 5, 6];
$even = [];
foreach($start as $i) {
    if ($i % 2 === 0) {
        $even[] = $i;
    }
}
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Into this
$start = [1, 2, 3, 4, 5, 6];
$even = array_filter($start, function ($i) {
    return $i % 2 === 0;
});
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Let's Talk about 
Callables
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Simple function declarations are 
global
function hello($name) {
    return 'Hello, '.$name;
}

Called like...

echo hello('David');
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Anonymous functions can be saved to 
variables

$hello = function($name) {
    return 'Hello, '.$name;
}

Called like...

echo $hello('David');
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Classes can have static methods

class Namer {
    public static function hello($name) {
        return 'Hello, '.$name;
    }
}

Called like...

echo Namer::hello('David');
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Objects can have methods

class Namer {
    public function hello($name) {
        return 'Hello, '.$name;
    }
}

Called like...

$namer = new Namer;
echo $namer->hello('David');
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All forms can be used with array_map, etc

$names = ['David', 'Megan', 'Sierra'];

array_map('hello', $names);

array_map($hello, $names);

array_map('Namer::hello', $names);
array_map(['Namer', 'hello'], $names);

$namer = new Namer;
array_map([$namer, 'hello'], $names);
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Let's Talk about use
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Variable Scoping
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This does not work!

$nonlocal = 7;
$greaterThan = function($number) {
    return $number > $nonlocal;
}
$greaterThan(1);
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This also does not work!

global $nonlocal = 7;
$greaterThan = function($number) {
    return $number > $nonlocal;
}
$greaterThan(1);
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This does work!

global $nonlocal = 7;
$greaterThan = function($number) {
    global $nonlocal;
    return $number > $nonlocal;
}
$greaterThan(1);
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But this is better!

$nonlocal = 7;
$greaterThan = function($number) use ($nonlocal) {
    return $number > $nonlocal;
}
$greaterThan(1);
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Why this matters

$nonlocal = 7;
$greaterThan = function($number) use ($nonlocal) {
    return $number > $nonlocal;
}
array_filter($array, $greaterThan);
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Or else

$nonlocal = 7;
array_filter($array, function($number) use ($nonlocal) {
    return $number > $nonlocal;
});
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Remember this?

$saved = [];
foreach($items as $item) {
    if ($item->size > 5) {
        $saved[] = $item;
    }
}
$display_titles = [];
foreach($saved as $item) {
    $display_titles[] = ucfirst($item->title);
}
foreach($display_titles as $title) {
    echo '<h1>'.$title.'</h1>';
}
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Let's transform

filter in for foreach
$saved = array_filter($items, function($i) {
    return $item->size > 5;
});
$display_titles = [];
foreach($saved as $item) {
    $display_titles[] = ucfirst($item->title);
}
foreach($display_titles as $title) {
    echo '<h1>'.$title.'</h1>';
}
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Let's transform

map for capitalizing
$saved = array_filter($items, function($i) {
    return $i->size > 5;
});
$display_titles = array_map(function($item) {
    return ucfirst($item->title);
}, $saved);
// somewhere else
foreach($display_titles as $title) {
    echo '<h1>'.$title.'</h1>';
}
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Hassles with that
• Temporary variables at every step

• Argument order on array_filter and array_map is 
inconsistent
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But maybe we can solve that...
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Collection Libraries
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Collections allow us to streamline 
filter, map, etc

@davidbhayes from ThoughtfulCode.com



Why collection 
pipelines?
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Easier to read -- we read left to right in 
English

array_map(array_filter()) executes inside out
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Skip argument order issues

Which one's the array?
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No need for temps with
fluent interface

->chaining()->methods()->is()->cool();
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Your ORM may 
already have one...
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Using a Laravel Collection
We have a Reddit-like site:
• Posts have scores

• Comments have scores

• We have a 'fluency scorer'

• We have a hypothesis that good posts get higher scoring 
and more fluent comments
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Without FP

$posts = Posts::all();
$goodPosts = [];
foreach($posts as $post) {
    if ($post->score > 500) {
        $goodPosts[] = $post;
    }
}
$goodComments = [];
foreach($goodPosts as $post) {
    $comments = $post->comments;
    foreach($comments as $c) {
        if ($c->score > 100) {
            $goodComments[] = $c;
        }
    }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
    $local['score'] = $c->score;
    $local['fluency'] = FluentScorer::score($c->content);
    $local['comment'] = $c;
    $local['post'] = $c->post;
    $scoredGoodComments[] = $local;
}
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Refactor 1 - filter out posts

$goodPosts = Posts::all()
                ->filter(function($post) {
                    return $post->score > 500
                });
$goodComments = [];
foreach($goodPosts as $post) {
    $comments = $post->comments;
    foreach($comments as $c) {
        if ($c->score > 100) {
            $goodComments[] = $c;
        }
    }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
    $local['score'] = $c->score;
    $local['fluency'] = FluentScorer::score($c->content);
    $local['comment'] = $c;
    $local['post'] = $c->post;
    $scoredGoodComments[] = $local;
}
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Quick Explanation

¥ flatten  will take nested arrays and de-nest them

¥ PHP doesn't have an native array_flatten , but you can 
make one
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Refactor 2 - collect good comments on good posts

$goodComments = Posts::all()
                ->filter( function ($post)  {
                    return  $post->score > 500
                })
                ->map( function ($p)  {
                    return  $post->comments;
                })
                ->flatten()
                ->filter( function ($c)  {
                    return  $c->score > 100;
                });
$scoredGoodComments = [];
foreach ($goodComments as $c) {
    $local[ 'score' ] = $c->score;
    $local[ 'fluency' ] = FluentScorer::score($c->content);
    $local[ 'comment' ] = $c;
    $local[ 'post' ] = $c->post;
    $scoredGoodComments[] = $local;
}
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Quick SimpliÞcation

¥ flatMap  is a shortcut for map then flatten
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Refactor 2 - collect good comments on good posts 
(again)

$goodComments = Posts::all()
                ->filter(function($post) {
                    return $post->score > 500
                })
                ->flatMap(function($p) {
                    return $post->comments;
                })
                ->filter(function($c) {
                    return $c->score > 100;
                });
$scoredGoodComments = [];
foreach($goodComments as $c) {
    $local['score'] = $c->score;
    $local['fluency'] = FluentScorer::score($c->content);
    $local['comment'] = $c;
    $local['post'] = $c->post;
    $scoredGoodComments[] = $local;
}

@davidbhayes from ThoughtfulCode.com



Refactor 3 - create new set with a map

$scoredGoodCommments = 
    Posts::all()
        ->filter(function($post) {
            return $post->score > 500
        })
        ->flatMap(function($p) {
            return $post->comments;
        })
        ->filter(function($c) {
            return $c->score > 100;
        })
        ->map(function($c) {
            return [
                'score' => $c->score,
                'fluency' => FluentScorer::score($c->content),
                'comment' => $c,
                'post' => $c->post,
            ];
        });
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Did it get better? (original)

$posts = Posts::all();
$goodPosts = [];
foreach($posts as $post) {
    if ($post->score > 500) {
        $goodPosts[] = $post;
    }
}
$goodComments = [];
foreach($goodPosts as $post) {
    $comments = $post->comments;
    foreach($comments as $c) {
        if ($c->score > 100) {
            $goodComments[] = $c;
        }
    }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
    $local['score'] = $c->score;
    $local['fluency'] = FluentScorer::score($c->content);
    $local['comment'] = $c;
    $local['post'] = $c->post;
    $scoredGoodComments[] = $local;
}
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Did it get better? (final)

$scoredGoodCommments = 
    Posts::all()
        ->filter(function($post) {
            return $post->score > 500
        })
        ->flatMap(function($p) {
            return $post->comments;
        })
        ->filter(function($c) {
            return $c->score > 100;
        })
        ->map(function($c) {
            return [
                'score' => $c->score,
                'fluency' => FluentScorer::score($c->content),
                'comment' => $c,
                'post' => $c->post,
            ];
        });
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What makes code hard to 
maintain?
• Short-lived variables are clutter

• Disguised intent via foreach

• Deeply nested conditionals
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Does FP help?
Local and temporary $variables are reduced, especially with 
pipelines
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Does FP help?

Replacing foreach es with map and filter  makes it clearer 
what each does
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Does FP help?

Nesting is minimized by small, single purpose functions
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"A program cannot
change until it is
alive in a
programmer's head."

—Jessica Kerr on Ruby Rogues 

(via @johnkary)
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Localizing control and complexity makes it easier for you to 

jump in

between meetings, children, life, etc
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Again

Did it get better? (original)
$posts = Posts::all();
$goodPosts = [];
foreach($posts as $post) {
    if ($post->score > 500) {
        $goodPosts[] = $post;
    }
}
$goodComments = [];
foreach($goodPosts as $post) {
    $comments = $post->comments;
    foreach($comments as $c) {
        if ($c->score > 100) {
            $goodComments[] = $c;
        }
    }
}
$scoredGoodComments = [];
foreach($goodComments as $c) {
    $local['score'] = $c->score;
    $local['fluency'] = FluentScorer::score($c->content);
    $local['comment'] = $c;
    $local['post'] = $c->post;
    $scoredGoodComments[] = $local;
}
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Did it get better? (Þnal)

$scoredGoodCommments = 
    Posts::all()
        ->filter( function ($post)  {
            return  $post->score > 500
        })
        ->flatMap( function ($p)  {
            return  $post->comments;
        })
        ->filter( function ($c)  {
            return  $c->score > 100;
        })
        ->map( function ($c)  {
            return  [
                'score'  => $c->score,
                'fluency'  => FluentScorer::score($c->content),
                'comment'  => $c,
                'post'  => $c->post,
            ];
        });
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Thank You!
I've been @davidbhayes

I run a site called WPShout

and another called Thoughtful Code
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